Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits.

نویسندگان

  • K Kashiwagi
  • A J Pahk
  • T Masuko
  • K Igarashi
  • K Williams
چکیده

N-Methyl-D-aspartate (NMDA) receptors are modulated by extracellular spermine and protons and are blocked in a voltage-dependent manner by spermine and polyamine derivatives such as N1-dansyl-spermine (N1-DnsSpm). The effects of mutations in the first and third transmembrane domains (M1 and M3) and the pore-forming loop (M2) of NMDA receptor subunits were studied. Surprisingly, some mutations in M2 and M3 of the NR1 subunit, including mutations at W608 and N616 in M2, reduced spermine stimulation and proton inhibition. These mutations may have long-range allosteric effects or may change spermine- and pH-dependent gating processes rather than directly affecting the binding sites for these modulators because spermine stimulation and proton inhibition are not voltage dependent and are thought to involve binding sites outside the pore-forming regions of the receptor. A number of mutations in M1-M3, including mutations at tryptophan and tyrosine residues near the extracellular sides of M1 and M3, reduced block by spermine and N1-DnsSpm. The effects of these mutants on channel block were characterized in detail by using N1-DnsSpm, which produces block but not stimulation of NMDA receptors. Block by N1-DnsSpm was studied by using voltage ramps analyzed with the Woodhull model of channel block. Mutations at W563 (in M1) and E621 (immediately after M2) in the NR1A subunit and at Y646 (in M3) and N616 (in the M2 loop) in the NR2B subunit reduced the affinity for N1-DnsSpm without affecting the voltage dependence of block. These residues may form part of a binding site for N1-DnsSpm. Mutation of a tryptophan residue at position W607 in the M2 region of NR2B greatly reduced block by N1-DnsSpm, and N1-DnsSpm could easily permeate channels containing this mutation. The results suggest that at least parts of the M1 and M3 segments contribute to the pore or vestibule of the NMDA channel and that a tryptophan in M2 (W607 in NR2B) may contribute to the narrow constriction of the pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pore region of N-methyl-D-aspartate receptors differentially influences stimulation and block by spermine.

The transmembrane and pore-forming regions of N-methyl-D-aspartate receptors containing the NR1 and NR2B subunits were studied by measuring the effects of various NR1 and NR2B mutants on stimulation and block by spermine. Block by spermine was predominantly affected by mutations in the M3 segment of NR1 and especially in the M1 and M3 segments of NR2B. These regions are in the outer vestibule o...

متن کامل

Anthraquinone polyamines: novel channel blockers to study N-methyl-D-aspartate receptors.

The effects of various anthraquinone polyamines (AQP) were studied at recombinant N-methyl-d-aspartate (NMDA) receptors expressed in Xenopus laevis oocytes. The AQP derivatives had different numbers of methylene groups between the NH(2) (or NH) groups in their spermidine-like tail. Thus, we termed these derivatives AQ33, AQ34, etc. All AQP derivatives inhibited responses of NR1/NR2 receptors in...

متن کامل

The effect of morphine dependence on expression of hippocampal N-methyl-D-aspartate receptor subunits in male rats

Introduction: N-methyl-D-aspartate (NMDA) receptors play a pivotal role in the development of tolerance and physical dependence to opiates. Activation of NMDA receptors involves the induction of long term potentiation (LTP) in hippocampus. Our previous study suggested that chronic oral administration of morphine enhanced NMDA dependent LTP in the CA1 area of hippocampal slices of rats. The p...

متن کامل

The selectivity filter of the N-methyl-D-aspartate receptor: a tryptophan residue controls block and permeation of Mg2+.

A hallmark feature of N-methyl-D-aspartate (NMDA) receptors is their voltage-dependent block by extracellular Mg2+. The structural basis for Mg2+ block is not fully understood. Although asparagine residues in the pore-forming M2 regions of NR1 and NR2 subunits influence Mg2+ block, it has been speculated that additional residues are likely to be involved. Here, we report the unexpected finding ...

متن کامل

Channel blockers acting at N-methyl-D-aspartate receptors: differential effects of mutations in the vestibule and ion channel pore.

A large number of structurally diverse compounds act as open-channel blockers of NMDA receptors. They may share discrete or overlapping binding sites within the channel. In this study, the effects of mutations in and around the membrane-spanning and pore-forming regions of NMDA receptor subunits were studied with three blockers, MK-801, memantine, and TB-3-4, using recombinant NMDA receptors ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 52 4  شماره 

صفحات  -

تاریخ انتشار 1997